Trivia Mining from Knowledge Graphs
نویسنده
چکیده
Trivia is any fact about an entity which is interesting due to its unusualness, uniqueness or unexpectedness. Trivia could be successfully employed to promote user engagement in various product experiences featuring the given entity. A Knowledge Graph (KG) is a semantic network which encodes various facts about entities and their relationships. We propose a novel approach called DBpedia Trivia Miner (DTM) to automatically mine trivia for entities of a given domain in KGs. The essence of DTM lies in learning an Interestingness Model (IM), for a given domain, from human annotated training data provided in the form of interesting facts from the KG. The IM thus learnt is applied to extract trivia for other entities of the same domain in the KG. We propose two different approaches for learning the IM a) A Convolutional Neural Network (CNN) based approach and b) Fusion Based CNN (F-CNN) approach which combines both hand-crafted and CNN features. Experiments across two different domains Bollywood Actors and Music Artists reveal that CNN automatically learns features which are relevant to the task and shows competitive performance relative to hand-crafted feature based baselines whereas F-CNN significantly improves the performance over the baseline approaches which use hand-crafted features alone. We also study the problem of relevance scoring of triples. We use the triples with “type-like” relations in which we employed a dataset with relevance scores ranging from 0 to 7, with 7 being the “most relevant” and 0 being the “least relevant”. The task focuses on two such relations: profession and nationality. We built a system which could automatically predict the relevance scores for unseen/new triples. Our model is primarily a supervised machine learning based one in which we use well-designed features which are used to a build a Logistic Ordinal Regression based classification model.
منابع مشابه
The Unusual Suspects: Deep Learning Based Mining of Interesting Entity Trivia from Knowledge Graphs
Trivia is any fact about an entity which is interesting due to its unusualness, uniqueness or unexpectedness. Trivia could be successfully employed to promote user engagement in various product experiences featuring the given entity. A Knowledge Graph (KG) is a semantic network which encodes various facts about entities and their relationships. In this paper, we propose a novel approach called ...
متن کاملGossip Galore - A Self-Learning Agent for Exchanging Pop Trivia
This paper describes a self-learning software agent who collects and learns knowledge from the web and also exchanges her knowledge via dialogues with the users. The agent is built on top of information extraction, web mining, question answering and dialogue system technologies, and users can freely formulate their questions within the gossip domain and obtain the answers in multiple ways: text...
متن کاملDid You Know? - Mining Interesting Trivia for Entities from Wikipedia
Trivia is any fact about an entity which is interesting due to its unusualness, uniqueness, unexpectedness or weirdness. In this paper, we propose a novel approach for mining entity trivia from their Wikipedia pages. Given an entity, our system extracts relevant sentences from its Wikipedia page and produces a list of sentences ranked based on their interestingness as trivia. At the heart of ou...
متن کاملMining Interesting Trivia for Entities from Wikipedia
TRIVIA is any fact about an entity, which is interesting due to any of the following characteristics − unusualness, uniqueness, unexpectedness or weirdness. Such interesting facts are provided in Did You Know? section at many places. Although trivia are facts of little importance to be known, but we have presented their usage in user engagement purpose. Such fun facts generally spark intrigue a...
متن کاملExploiting semantic web knowledge graphs in data mining
Data Mining and Knowledge Discovery in Databases (KDD) is a research field concerned with deriving higher-level insights from data. The tasks performed in that field are knowledge intensive and can often benefit from using additional knowledge from various sources. Therefore, many approaches have been proposed in this area that combine Semantic Web data with the data mining and knowledge discov...
متن کامل